NAME _____

Student No _____

CONVEX OPTIMIZATION DAYCLASS Dr. Tom Luo DURATION OF EXAMINATION: One week (due Next Friday) Xidian University Midterm Examination

This examination paper includes 3 pages and 3 problems. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

Problem 1 (20 points)

Optimal facility location via second order cone programming

Suppose there are *n* locations in \mathbb{R}^2 whose coordinates are denoted by $a_i = (a_{i1}, a_{i2})^T$, i = 1, 2, ..., n. A facility is to be set up so that the weighted sum of Euclidean distances to all the given *n* locations is minimized. In other words, let $x \in \mathbb{R}^2$ denote the location of the facility. Then we wish to

minimize
$$\sum_{i=1}^{n} w_i ||x - a_i||_2$$

subject to $x \in \mathbb{R}^2$,

where $w_i > 0$ are given weights. Show that this problem can be converted to a second order cone program. If the L_2 norm $\|\cdot\|_2$ is replaced by L_1 norm or L_{∞} norm, is the above problem convex? How would you reformulate the problem? Midterm Exam, May 2013

Problem 2 (20 points)

Minimum length approximation.

Consider the problem

minimize length(x)
subject to
$$||Ax - b|| \le \epsilon$$
,

with variable $x \in \mathbb{R}^n$, and problem parameters $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $\epsilon > 0$. The objective function length(x) is defined as

$$length(x) = min\{k \mid x_i = 0 \text{ for } i > k\}.$$

In a regression context, we are asked the find the minimum number of columns of A, taken in order, that can approximate the vector b within a tolerance ϵ .

Show that this is a quasiconvex optimization problem.

Midterm Exam, May 2013

Problem 3 (20 points)

Maximum volume box inside a polyhedron.

A *box* in \mathbb{R}^n is a set of the form $B(l, u) = \{x \mid l \le x \le u\}$, where $u > l \in \mathbb{R}^n$. In this problem we consider the problem of finding the maximum volume box contained in a polyhedron $\mathcal{P} = \{x \mid Ax \le b\}$, where $A \in \mathbb{R}^{m \times n}$. A straightforward, but very inefficient, way to express the constraint $B(l, u) \subseteq \mathcal{P}$ is to use the set of $m2^n$ inequalities $Av^i \le b$, where v^i are the (2^n) corners of B(l, u). (Clearly if the corners of a box lie inside a polyhedron, then the entire box does.) Fortunately it is possible to express the constraint in a far more efficient way.

Show that the constraint $B(l, u) \subseteq \mathcal{P}$ can be expressed as a set of *m* inequalities $A^+u - A^-l \leq b$, where $A_{ij}^+ = \max\{0, A_{ij}\}$ and $A_{ij}^- = \max\{0, -A_{ij}\}$. Note the extraordinary savings compared to expressing $B(l, u) \subseteq \mathcal{P}$ via the vertices, as described above — a factor of 2^n .

Use this result to pose the problem of maximizing the volume of the box as a convex optimization problem (that does not involve exponentially many constraints).