NAME

Student No

CONVEX OPTIMIZATION DAYCLASS Dr. Tom Luo DURATION OF EXAMINATION: One week (due Next Friday) Xidian University Midterm Examination May 2013

This examination paper includes 3 pages and 3 problems. You are responsible for ensuring that your copy of the paper is complete. Bring any discrepancy to the attention of your invigilator.

Problem 1 (20 points)

Optimal facility location via second order cone programming

Suppose there are *n* locations in \mathbb{R}^2 whose coordinates are denoted by $a_i = (a_{i1}, a_{i2})^T$, $i = 1, 2, ..., n$. A facility is to be set up so that the weighted sum of Euclidean distances to all the given *n* locations is is to be set up so that the weighted sum of Euclidean distances to all the given *n* locations is minimized. In other words, let $x \in \mathbb{R}^2$ denote the location of the facility. Then we wish to

minimize
$$
\sum_{i=1}^{n} w_i ||x - a_i||_2
$$

subject to
$$
x \in \mathbb{R}^2
$$
,

where $w_i > 0$ are given weights. Show that this problem can be converted to a second order cone program. If the L_2 norm $\|\cdot\|_2$ is replaced by L_1 norm or L_∞ norm, is the above problem convex? How would you reformulate the problem?

Midterm Exam, May 2013 Page 2

Problem 2 (20 points)

Minimum length approximation.

Consider the problem

minimize length(*x*)
subject to
$$
||Ax - b|| \le \epsilon
$$
,

with variable $x \in \mathbb{R}^n$, and problem parameters $A \in \mathbb{R}^{m \times n}$, $b \in \mathbb{R}^m$, and $\epsilon > 0$. The objective function langth(x) is defined as length (x) is defined as

$$
length(x) = min\{k \mid x_i = 0 \text{ for } i > k\}.
$$

In a regression context, we are asked the find the minimum number of columns of *A*, taken in order, that can approximate the vector b within a tolerance ϵ .

Show that this is a quasiconvex optimization problem.

Midterm Exam, May 2013 Page 3

Problem 3 (20 points)

Maximum volume box inside a polyhedron.

A *box* in \mathbb{R}^n is a set of the form $B(l, u) = \{x \mid l \le x \le u\}$, where $u > l \in \mathbb{R}^n$. In this problem we consider the problem of finding the maximum volume hox contained in a polyhedron $\mathcal{P} = \{x \mid 4x \le h\}$, where problem of finding the maximum volume box contained in a polyhedron $\mathcal{P} = \{x \mid Ax \leq b\}$, where $A \in \mathbb{R}^{m \times n}$. A straightforward, but very inefficient, way to express the constraint $B(l, u) \subseteq \mathcal{P}$ is to use the set of $m2^n$
inequalities $Av^i \leq h$ where v^i are the (2^n) corners of $B(l, u)$. (Clearly if the corners of a box lie inequalities $Av^i \leq b$, where v^i are the (2^{*n*}) corners of *B*(*l*, *u*). (Clearly if the corners of a box lie inside
a polyhedron, then the entire box does). Fortunately it is possible to express the constraint in a a polyhedron, then the entire box does.) Fortunately it is possible to express the constraint in a far more efficient way.

Show that the constraint *B*(*l*, *u*) ⊆ *P* can be expressed as a set of *m* inequalities $A^+u - A^-l \le b$, where $A^+_{ij} =$
may/0, 4, and $A^- = \max(0, -4, \lambda)$. Note the extraordinary sayings compared to expressing *B*(*l*, *u*) max{0, A_{ij} } and A_{ij}^- = max{0, − A_{ij} }. Note the extraordinary savings compared to expressing $B(l, u) \subseteq \mathcal{P}$ via
the vertices as described above — a factor of 2^n the vertices, as described above — a factor of 2^n .

Use this result to pose the problem of maximizing the volume of the box as a convex optimization problem (that does not involve exponentially many constraints).